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The term “artificial intelligence” (AI) conjures images of auton-
omous vehicles maneuvering through streets, smartphone 
assistants that answer your questions, or androids exploring 
final frontiers. 

At a basic level, however, AI can be understood as the mul-
tidisciplinary endeavor to approximate human reasoning with 
computation. For planners, it represents an emerging toolbox 
that enables a range of new capabilities—from the scalable 
digitization of physical infrastructure to tools that can help 
planners synthesize and summarize public feedback (Figure 1). 

The rapid advancement and integration of such techniques 
into daily life are increasingly influencing planning practice and 
our communities at large. Whether AI primarily benefits entire 
communities or narrow interests, though, depends on plan-
ners’ abilities to engage with the challenges and opportunities 
surrounding its civic applications. Naively applied, these technol-
ogies can automate discrimination, create unaccountable pro-
cesses, and create a false certainty about what the future holds. 

This PAS Memo intends to equip planners with an under-
standing of AI concepts and their potential implications. 

Additionally, it will discuss important considerations regarding 
AI applications and their roles in larger trends connected to 
digital governance and civic data in planning. 

Wide availability of this technology is still very new, but it 
is powerful and fast moving. Planners have a responsibility to 
understand the implications of the technologies they choose 
to deploy, and, with understanding, they can help to ensure 
that these technologies are used responsibly.

Background
The field of AI research began in the 1950s. Early investigations 
included a paper by Alan Turing, the British mathematician 
considered the father of computer science, exploring wheth-
er computers can think, as well as a 1956 U.S. Department of 
Defense-sponsored conference at which the term “artificial 
intelligence” was coined (McCarthy 2012). The field kicked off in 
earnest, however, when the first microprocessors were devel-
oped in the 1970s. 

One of the first applications of AI was symbolic AI, such as 
expert systems, which sought to encode the decision-making 
capacity of experts in complex sets of handcrafted rules. This 
required heavy involvement from industry experts, and low 
returns led to a series of “AI winters” in which research and 
funding in the field withered for decades (McCarthy 2012). 

Everything changed in the early 2010s. New advancements 
in AI were driven by three intersecting factors: 

•	 Advent of robust techniques. “Deep learning” kindled 
a renaissance in the subfield of machine learning, the 
study of algorithms that improve with experience (Council 
of Europe 2020; Singh 2019). Deep learning provided a 
generalized set of machine-learning algorithms loosely 
inspired by neurons in the brain. This enabled a rapid, 
extreme improvement in complex, multidimensional 
pattern-matching—allowing computers to find patterns 
in complex and multidimensional data such as images and 
audio (Singh 2019). 

Figure 1. AI offers planners an emerging toolbox enabling a range of 
new capabilities, including the transformation of raw imagery and 
data feeds into living digital views of our world (David Wasserman)
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•	 The data revolution. For machines to learn from experi-
ence, many known methods require access to big datasets 
to “train” them on. Social media, the increasing maturity of 
the Internet, and the digitalization of the human expe-
rience contributed to availability of examples for model 
training (Council of Europe 2020; Singh 2019).

•	 Improvements in computing hardware. The same 
graphics processing units (GPUs) that enabled video 
games to become an American pastime massively 
reduced training time for huge datasets. Researchers’ 
experiments could take minutes, rather than weeks, by 
leveraging modern GPUs and advanced cloud computing 
infrastructure to drastically increase parallel processing 
capabilities (Council of Europe 2020; Singh 2019). 

Combined, these advances enabled computers to learn by 
example, creating a new computer programming paradigm.

Learning by Example
When software developers write a program, their code pro-
cesses input data to create an output using human-crafted 
instructions. Machine learning reverses this logic: it combines 
input and output data to create a program. 

Machine learning provides a set of automated methods that 
do not require substantive domain knowledge other than that 
encapsulated in the training examples. In this sense, it is con-
ceptually more akin to statistics than to conventional coding. 
However, there are two critical differences. 

First, unlike statistics, machine-learning methods are not 
limited to highly structured numerical data. They have robust 
performance when working with complex multimedia files 
including images, video, and audio (ITF 2019; Singh 2019; 
Crawford 2021) and can accurately relate examples from those 
formats to arbitrary output concepts (Ding 2020; Singh 2019). 

The second difference is in the volume of data required. 
Statistics can typically be run on dozens to hundreds of sam-
ples; complex machine-learning models often require millions. 
This, in turn, implies that most models must initially be trained 
somewhere by someone with access to enormous quantities 
of training data and thus require large computational capa-
bilities. While cloud computing allows even small planning 
departments access to high-performance computing, this last 
requirement is often a binding constraint. 

A Digital Foundation
The “data hungriness” of machine-learning models is the per-
haps the biggest impediment to their use in planning. In some 
cases, training data can be gathered from routinely digitized 
data such as administrative records or synthesized in game 
engines used in the video game industry (Andrews 2021). In 
others, though, human hand-annotation is required, which 
sharply limits scale. While there are innovative techniques that 
can reduce the data required to develop these models, data re-
mains central to how AI works (Jain et al. 2011; Crawford 2021).

Many communities still use analog steps (e.g., physical 
paper) for key planning processes (e.g., building permitting). 

Important Terminology

•	 Algorithm – a set of specific steps to perform a 
well-specified task. Algorithms typically take in some 
input and then apply a process to create an output.

•	 Algorithmic bias – systematic and repeatable errors in a 
computer system that create unfair outcomes, typically 
privileging one group of users over others. 

•	 Artificial intelligence – a simulation of human intelli-
gence and reasoning. 

•	 Civic analytics – the application of advanced data 
mining, modeling, and analysis techniques to enable 
data-informed and evidence-based decision-making in 
urban and regional operations, policy, and planning. 

•	 Computer vision – a field that focuses on how computers 
can gain high-level insights from digital images or videos.

•	 Digitization – the conversion of data and documents 
into a computer-readable format. 

•	 Digitalization – the conversion of analog processes 
to digital experiences. This can make a process more 
transparent, accessible, and convenient while enabling 
easier reporting and analysis of incoming information 
to guide decision-making. 

•	 Digital twin – a digital representation of the built envi-
ronment or system. A smart city digital twin is continu-
ously updated with real-time data and analytics on inter-
actions between humans, infrastructure, and technology 
to create a living digital representation of a city. 

•	 Machine learning – algorithms based on applied sta-
tistical models that can learn without following explicit 
instructions. These base decisions on inferences drawn 
from patterns in data. 

•	 Natural language processing – a subfield of linguistics, 
computer science, and artificial intelligence that that 
focuses on how computers can derive understanding 
from natural language.

•	 Personally identifiable information – any information 
that can be used to distinguish or trace an individual’s 
identity, either alone or linked with other correlative 
datasets. This can include identifiers such as names and 
social security numbers, but it can also include mobile 
GPS data or sequenced images. 

•	 Training data – labeled datasets input to supervised ma-
chine-learning models to teach them relationships they 
can infer from the data. A prototypical example is a collec-
tion of images labeled by what they contain in a separate 
spreadsheet. The quantity, quality, and degree of repre-
sentation in these datasets has important implications 
for how the models created from it perform in real world 
applications and the degree of bias they operate with. 

•	 Urban informatics – the study of urban phenomena 
through an evidence-based framework of urban sensing, 
data mining and integration, modeling and analysis, 
and visualization to advance methods in computational 
sciences and address urban and regional challenges.
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Data gathered in this way can’t be directly used with AI tools 
until it has been digitized (DeAngelis et al. 2022; Miller 2021). 
Local governments may be able to obtain digitized data from 
vendors and other sources, but they still need the capacity to 
maintain and leverage it to inform decision-making. Before 
cities can apply AI to specific areas of planning practice, then, 
they typically need foundational investments in data infrastruc-
ture to build the institutional capacity to manage it (Hurtado et 
al. 2021; Kontokosta 2018). 

Some work in this area has already been done through 
the digitization of planning-relevant data and digitalization of 
its processes and systems. What began with GIS (Klosterman 
1999) has evolved into a rich ecosystem of web maps, data 
vendors, open data portals, and online engagement systems 
that hint at entirely new governance models in planning (Bayat 
and Kawalek 2021; Hurtado et al. 2021).

However, progress has been uneven. The 2019 Technol-
ogy Benchmarking survey conducted by the University of 
San Francisco and Urban Insights of 600 cities found that all 
surveyed planning departments now have websites, indicating 
progress in providing information, but other components of 
the survey suggest a slower pace of digitalization in the plan-
ning process. For example, 53 percent of surveyed cities do not 
provide online permitting (Figure 2), and 72 percent have no 
open data portal on their city websites (Figure 3) (Riggs et al. 
2019). 

Consequently, much data related to the planning process 
is hard to access, siloed, or not being collected at all (Dimina 
2019; Riggs et al. 2019; Noardo et al. 2022). For example, many 
cities store data as PDFs, which are easy for humans to read—
but not computers. Most algorithmic tools can’t use this data 
unless it is processed into a form they can read, like a database 
or text formats like HTML/XML (Noardo et al. 2022). 

As data is central to AI, planning digitalization is an ongoing 
process that is a necessary precursor to realizing value from AI 
(OECD 2019; DeAngelis et al. 2022; Miller 2021). And invest-

ments in digitalization can also make “front desk” interactions 
with the public smoother and more user focused (DeAngelis 
et al. 2022). Paper permit submittals increase friction, attending 
meetings in person can be inconvenient, and reviewing plans 
in a static PDF is not engaging. In the long term, planning 
departments’ inability to reduce these transaction costs by digi-
talizing their processes can erode public support for planning 
and the perception of its value (Zucker 2007). 

The COVID-19 pandemic has pushed many agencies and 
organizations to accelerate digital governance initiatives. 
Even so, process digitalization is a challenge for the planning 
profession and public-sector governance at large. Investments 
in planning’s responsiveness are effectively investments in 
community trust. Movement towards digital governance can 
improve planners’ abilities to leverage emerging technologies 
to better serve their communities (Zucker 2007; DeAngelis et 
al. 2022). As emphasized throughout PAS Report 599, Smart 
Cities: Integrating Technology, Community, and Nature, plan-
ners must adjust planning processes to today’s digital environ-
ment and add new tools, relevant skills, and knowledge to their 
repertoires, both to ensure that their communities can benefit 
from digital technologies as well as to maintain the planning 
profession’s relevance in an era of digital transformation (Hurta-
do et al. 2021; DeAngelis et al. 2022).

With the advent of the data revolution and wider deploy-
ment of sensors into our built environment, the growing field 
of civic analytics offers higher expectations and more opportu-
nities to use data to address challenges in urban and regional 
operations, policy, and planning (Figure 4, p. 4) (Kontokosta 
2018; Tomer 2019). These changes in data systems and new 
policy challenges have prompted cities to invest in cross-agen-
cy data sharing, mandate open data, and identify new roles in 
local government, such as chief data officer (Kontokosta 2018; 
OECD 2019). Additionally, governments are increasingly finding 
uses for emerging smart city solutions, civic software, and big 
data providers (Kontokosta 2018; Bayat and Kawelek 2021). 

Figure 2. Online permitting by city size (Riggs et al. 2019) Figure 3. Open data portals on city website by city size (Riggs et al. 
2019)

https://www.planetizen.com/features/102851-city-planning-technology-2019-benchmarking-study
https://www.planetizen.com/features/102851-city-planning-technology-2019-benchmarking-study
https://www.planning.org/publications/report/9226594/
https://www.planning.org/publications/report/9226594/
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Figure 4. Civic analytics can assist with a broad spectrum of challenges within operations, policy, and planning for cities and regions 
(adapted from Kontokosta 2018).

Data’s role in decision-making is likely to grow. Planners will 
benefit from an increased awareness of its potential applica-
tions, what gaps exist in their available data, as well as how to 
share, distribute, license, and manage it.

AI Applications for Planning Practice 
These advancements in computer science, machine learning, 
and digitalization are creating an emerging AI toolbox that 
can extend planners’ capabilities and complement their skill-
sets. AI can help planners improve data collection, forecast 
alternative futures, inform decision-making, and accelerate 
creative design processes. 

Digitization of Infrastructure and Assets 
Inventories of the built environment enable planners to under-
stand the state of existing infrastructure relative to the needs 

of their communities (Wasserman 2020; Yigitcanlar et al. 2020). 
Planners typically inventory the built environment with parcel 
data, manual aerial reviews, and field data collection. 

While some information, such as land cover or vegetation 
health, can be derived from remote sensing’s automated data 
extraction techniques, more detailed components of the built 
environment were once difficult to automatically digitize. 
Advances in computer vision have enabled new techniques 
that can transform high-resolution aerial imagery directly into 
geospatial data, which can reduce costs and potential errors 
common in the tedious work traditionally required to digitize 
community assets. 

The geospatial data and services company EarthDefine 
applied advances in remote sensing to generate a one-meter 
resolution tree canopy database that can be used in citywide 
comparisons of tree canopy at the street level (Figure 5, p. 5). 

http://www.earthdefine.com/
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Figure 5. EarthDefine’s one-meter resolution tree canopy database 
used by American Forests to generate the Tree Equity Score data-
base (American Forests) 

For comparison, the U.S. Forest Service produces a 30-meter 
tree canopy dataset whose resolution is not sufficient for urban 
tree canopy inventories. EarthDefine donated this data to 
American Forests to generate the Tree Equity Score database, 
which summarizes canopy cover at the census block group 
level to help determine inequitable distributions of tree cover 
within urbanized areas (American Forests 2021).

This type of extraction of data from aerial imagery can gen-
erate digital inventories of streets and other public works. For 
example, in California, Contra Costa County Public Works worked 
with earth image digitization company Ecopia to digitize the 
public rights-of-way across large parts of the county (Figure 6, p. 
6). This transformed recent imagery into a geospatial cross-sec-
tional database representing every lane, median, sidewalk, and 
crosswalk and their associated widths (Ecopia 2021).

Data Standards, Open Codes, and Accessibility

When Google Maps was introduced in 2005, it shifted expecta-
tions of how we get from point A to point B (Reid 2020). Soon 
after its release, Portland, Oregon’s TriMet collaborated with 
Google to identify how to represent transit systems and sched-
ules in routing and trip planning. This collaboration ultimately 
culminated in the development of a new data exchange 
format—the General Transit Feed Specification (GTFS). Many 
transit agencies now publish GTFS data, which software pro-
viders can use to integrate transit service and schedules into 
routing, mapping, and other software services (McHugh 2013). 

The story of GTFS illustrates how the public and private 
sectors can forge partnerships and develop data standards 
that can enhance public services at scale. GTFS enabled the 
creation of entirely new software, tools, and data ecosystems 
that enriched our understanding of transit (McHugh 2013).

Standards like GTFS allow private-sector software develop-
ment to scale, reducing costs and market risks. For the public 
sector, data standards can help planning professionals build 
a shared understanding of their communities through more 
robust cross-regional research and enhance public services 
by establishing an agreed upon “data lexicon” that can be 
used to curate technological solutions (PIA 2021; McHugh 
2013; Noardo et al. 2022). In permitting and agency opera-
tions, planning standards can be used to facilitate smoother 
transactions with users and the public, while on the back end 
they can be used to construct planning scenarios or provide 
consistent data across regions that can be used to train ma-
chine-learning models. And when software tools are based 
on standard data formats, they are more accessible to smaller 
communities—instead of needing to create a new tool to 
solve a common problem, communities can publish their 
own data in the same format to benefit from the work that 
has already been done.

What can planners do to improve this situation? Some use-
ful principles have been developed by the Planning Institute 
of Australia (PIA): 

Planning however is work in the public interest .... It is import-
ant that the digital planning platform to be provided as public 
infrastructure, governed in the public interest and using open 
technology, including:

•	 Machine readable digital content: Ensure that content 
published and procured in public planning processes 
is easily processed by computers (machine readable), 
including the data and methods contained within them. 
Ideally, content is provided in accessible formats (i.e., XML 
and HTML) which are provided in addition to or instead of 
PDF files.

•	 Standardization: Standards should be developed for 
common language, processes and data in order to enable 
collaboration across jurisdictions.

•	 Open data: All non-sensitive data produced within public 
planning processes should be made available as open 
data, including development approvals data and 3D and 
4D modelling publicly procured for digital twin develop-
ment. Processes for the handling of sensitive data must be 
maintained.

•	 Open rules: Computer code representing planning rules 
used in automated or assisted public decision-making 
processes should be made publicly available.

•	 Open-source code: Where public funding is used in the 
development of new digital tools, these should be provided 
as open source to enable reuse across different agencies 
and authorities. Grants should be provided, and collabora-
tion encouraged between different authorities so that no 
one agency disproportionately bears the cost of software 
development.

These principles represent key changes required for planning 
practice to enable frictionless interactions, digital transparency, 
and cross-jurisdictional collaboration (PIA 2021).

https://github.com/google/transit/tree/master/gtfs/spec/en
https://www.planning.org.au/planningresourcesnew/plantech-pages/pia-plantech-principles
https://www.treeequityscore.org/
https://www.ecopiatech.com/
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Beyond aerial imagery, street level images from Google 
Street View and Mapillary are increasingly being used to 
digitize assets such as streetlights and stop signs that might 
be more difficult to reliably detect in aerial imagery. As part of 
a mobility plan, Alta Planning + Design used Mapillary to aid 
network screening and verifying a crosswalk inventory created 
by Ecopia in Mount Shasta, California (Figure 7). 

Such scaled-up geolocated digital representations of the 
built environment can be used to create “digital twins” support-
ing informed decision-making, effective stakeholder engage-
ment, and robust scenario-planning practices. 

Urban Observation
Machine learning can now derive meaningful insights 
about how people interact with the built environment from 

standard street-level cameras. The resulting data can show 
real-time or aggregate metrics of impact before and after 
policy and design interventions, helping to determine their 
effectiveness.

The qualitative observations once carried out by the likes 
of Kevin Lynch and William Whyte can now be automatically 
captured and surfaced as data feeds. These feeds can address 
key problems for emerging areas of concern to planners, such 
as managing the growing and competing demands for curb 
space in cities (DeAngelis et al 2022). 

As an example, curbside management analytics firm 
Automotus provides curbside monitoring services based on 
computer vision-derived observations of curbside users like 
delivery drivers, pedestrians, taxis, transportation network com-
panies, and other user groups (Figure 8, p. 7). Its technology 

Figure 6. Contra Costa County’s 
digitization of its rights-of-way 
(Ecopia)

Figure 7. A sign inventory creat-
ed for Mount Shasta, California, 
showing where AI detected stop 
signs (Meta Platforms, Inc.)

https://www.mapillary.com/
https://www.automotus.co/
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Figure 8. Computer vision can derive counts of delivery trucks, people, 
and other curbside users to better manage the curb (Automotus)

can provide real-time activity data and help with enforcement 
of new policies, such as piloting zero emissions delivery zones 
to help incentivize commercial adoption of electric vehicles 
(Automotus 2021).

This allows planners to empirically test the impacts of 
different physical or policy-based interventions in transporta-
tion, urban design, and other areas at a lower cost and more 
comprehensive scale than ever before. As more and more 
sensors are deployed in urban environments—in connected or 
autonomous vehicles, driver assistance systems, traffic cameras, 
and so on—the velocity and scope of new AI-derived insights 
for urban observation is likely to increase in the years ahead 
(Bayat and Kawelek 2021; Wasserman 2020). 

Applications already seeing deployment include moni-
toring for parking occupancy, proactively evaluating safety, 
and multimodal counts (Wasserman 2020; Ding 2020). For 

example, Toronto’s pedestrian projects team was challenged 
to measure the effectiveness of an upcoming curb modifica-
tion. The city worked with software and services firm Transoft 
Solutions to transform the footage from temporary cameras 
to trajectories and incidents three days before and after the 
curb radius reduction, tracking conflict rates and the speed of 
turning vehicles involved in a conflict (Figure 9). The result-
ing data showed that the intervention decreased high-risk 
conflicts by 30 percent.

Digital Twins and Digital Futures
Smart city digital twins offer a digital replica of a city or region 
that takes in real-time data feeds and relays insights about the 
interactions between humans, infrastructure, and technology 
(Hurtado et al. 2021; Mohammadi and Taylor 2020; Adler 2016). 
These digital replicas can leverage advanced modeling to 
inform community narratives or illustrate scenarios to help the 
public understand the ripple effects of planning policy (Mo-
hammadi and Taylor 2020). Just as the early applications of AI 
in urban planning were used to model future land-use change, 
smart city digital twins promise the ability to model a wider 
range of digital futures (Jain et al. 2011; Hurtado et al. 2021). 

When planners make forecasts of the future to identify 
future local or regional community needs, using empirically 
valid and transparent methodologies is critical for stakeholder 
buy-in (Waddell 2011). Simulations model systems based on 
our understanding of the world to imitate their behavior and 
predict their effects (Adler 2016; Waddell 2011). For nearly a 
decade, the integrated land-use and transportation simulation 
model UrbanSim has been used by metropolitan planning or-
ganizations (MPOs) to build regional forecasts of potential land 
use, population, employment, and other changes based on 
projections and expected transportation investments (Figure 
10, p. 8) (Waddell 2011). 

Applications like UrbanSim exemplify the potential of inter-
disciplinary simulation models operating on digital replicas of 

Figure 9. Temporary camera footage from Toronto shows conflict hotspots detected before curb radius reduction (left) and after curb 
radius reduction (right) (Transoft Solutions (ITS))
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https://safety.transoftsolutions.com/
https://safety.transoftsolutions.com/
https://www.planning.org/publications/document/9209455/
https://urbansim.com/
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land and infrastructure to identify possible futures for commu-
nities and regions.

Decision Support Systems 
Decision support systems are information systems or inter-
active tools that help organizations make informed decisions 
about underspecified problems using frameworks that are flex-
ible and adaptive (Snow 2021). In the future, decision tools may 
help with investment prioritization or help automate much of 
the tedious work in evaluating developments, zoning requests, 
or similar administrative procedures.

The use of checklists, complicated prioritization tools, or 
algorithmic decision tools to combat inconsistency and bias 
in policy decision-making is not unfamiliar to planners (Snow 
2021; Wright 2019). Planning processes must not be “arbitrary 
and capricious” in either legal or political contexts (Snow 2021; 
Wright 2019). Having structured and fair processes to evaluate 
development proposals, their conformance to plans and codes, 
and their impact on the community is a regular part of devel-
opment review or design evaluations (Zucker 2007). Recent 
publications have acknowledged the consistency and pro-
cess benefits of algorithmic decision tools in zoning, such as 
scoring, and evaluation criteria used to evaluate development 
proposals and rezoning requests (Wright 2019).

For the development review process, AI-based tools could 
act as a type of inferential glue that connects digital submittals 
using Building Information Modeling (BIM), local GIS data, and 
evaluation criteria to more quickly evaluate development im-

pacts, benefits, and conformance to local plans or permitting 
requirements (Figure 11). The automation and digital evalua-
tion process could enable development review processes that 
are more nimble, responsive, and better integrated across de-
partments and disciplines (Noardo et al 2022). Digital permit-
ting systems such as CivitPermit are claiming to augment the 
permitting process by leveraging AI and GIS-BIM integration to 
facilitate more efficient and integrated evaluations (Soft Tech 
2021; Noardo et al 2022). 

Existing tools already used by planners might offer further 
capabilities for automated evaluation of metrics given a set of 
scenarios or designs. For example, ArcGIS CityEngine is known 
for providing planners a powerful set of procedural modeling 
techniques to quickly generate 3D models of blocks, buildings, 
and streets using rules that adjust based on data (number of 
floors, setback requirements) (Figure 12, p. 9) (Lechot 2020). For 
each set of models generated, metrics can be derived and then 
be used to “optimize” a zoning or design proposal based on 
the balance of benefits and costs (Lechot 2020). Such decision 
support tools that can iteratively evaluate scenarios can inform 
better planning and design and identify trade-offs early on in 
planning (Lechot 2020; Wright 2019).

Augmented Creativity
The importance of visual communications is not lost on plan-
ners, who use maps and 3D models to inform public narratives 
to guide policy decision-making. Creative applications of AI 
enable the generation of images and 3D content at incredible 

Figure 10. UrbanSim’s Urban-
Canvas web-based application 
aids with integrated land use 
and transportation modeling 
(UrbanSim)

Figure 11. Regulatory and permitting processes have evolved from paper-based evaluations to digitally integrated BIM-GIS evaluation 
systems (Noardo et al. 2022)

https://thecivit.com/product-civitpermit/
https://www.esri.com/en-us/arcgis/products/arcgis-cityengine/overview
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speeds (NVIDIA 2021; Nishida et al. 2016; Anderson 2021). This 
provides users with the ability to create increasingly complex 
visualizations and designs iteratively and efficiently. 

NVIDIA Canvas is a prototype application that uses AI 
to transform rough sketches and blobs into photorealistic 
landscapes (Figure 13). In the future, image editors could 
create highly detailed landscape visualizations from simple 

blocks of color. As it stands, companies such as Adobe are 
increasingly integrating AI capabilities into their software 
so users can replace the sky of one image with another, 
change background lighting, or automatically select the 
subject of images (Adobe 2019). This could enable planners 
and urban designers to create more engaging visualizations 
faster and at lower cost. 

Figure 12. Esri’s ArcGIS CityEngine’s procedural runtime can be used alongside optimization routines to identify different design scenarios 
given a set of zoning and design constraints (Camille Lechot, Esri R&D Center Zurich)

Figure 13. NVIDIA Canvas transforms rough sketches and blobs into photorealistic landscapes (NVIDIA)

https://www.nvidia.com/en-us/studio/canvas/
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Similarly, machine learning-infused parametric design ap-
proaches are being developed within the worlds of architecture 
and urban design that enable more rapid prototyping of differ-
ent design scenarios and space configurations (Anderson 2021). 
Researchers tested a framework in which AI models were trained 
to connect rough pencil-sketched images to shape grammars 
that transformed them into more complex and sophisticated 3D 
models (Figure 14) (Nishida et al. 2016). Future applications could 
quickly translate rough sketches into more complete 3D models 
for planning communication and urban design.

When combined with the simulation and visualization po-
tential of modern game engines, these approaches could allow 
planners to go more quickly from a design scenario idea to a 
fully rendered and interactive vision for a plan or project.

Reading the Room
How governments facilitate public deliberations on deci-
sions remains one of the most contested topics in municipal 
governance and beyond (Williamson et al. 2004; Arnstein 
1969).  Advancements in natural language processing (NLP) are 
enabling new methods “to read the room” when governments 
are getting feedback from the public (Eggers et al. 2019). 

Planners’ understanding of their communities’ needs is 
informed by understanding the public’s comments in public 
meetings, charettes, web-based engagement applications, 
participatory budgeting exercises, and other forms of deliber-
ation (Williamson et al. 2004; Denker et al. 2021). Connecting 
with communities helps planners understand the pace of trust 
for public actions and provides opportunities to earn it at a time 
when it is historically low (Brenan 2021). 

When COVID-19 forced many public engagement and 
deliberation activities online in early 2020, there were already 
a considerable number of tools to create digital public forums 
(Denker 2021; Fedorowicz 2020). But online engagement tools 
are increasingly leveraging advancements in NLP to quickly 
synthesize components of people’s feedback, such as their 
sentiments towards projects, or identify similar areas of feed-
back (Figure 15, p. 11) (Denker 2021; Fedorowicz 2020; Eggers 
et al. 2019). This can help planners synthesize large amounts 
of unstructured public comments when more open-ended 
feedback is desired (Eggers et al. 2019). 

Considerations for AI and Planning
AI opens new possibilities for planning practice, but it requires 
awareness of the technological foundations underpinning 
planning methods and practice and acknowledgment of the 
risks associated with AI and related emerging technologies 
(OECD 2021a; Tomer 2019). Responsible and effective applica-
tions of AI in urban planning practice will depend on planners’ 
understanding of these issues. 

The following sections introduce planners to important 
considerations regarding the use of AI and the digitalization 
of planning practice. Readers are encouraged to consult the 
resources cited throughout these sections for more in-depth 
guidance on these topics. 

Digital Skills Gaps
Both digital transformation and the informed application of AI 
technologies in planning practice will require new skills (Dimi-
na 2019; Yigitcanlar 2020; Hurtado et al. 2021). Agencies such as 

Figure 14. Researchers trained AI models to connect rough pencil-sketched images to shape grammars, transforming them into more 
complex and sophisticated 3D models (Nishida et al. 2016)
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the Los Angeles Department of Transportation (LADOT) have 
gone as far as to adopt the mantra, “Code is the new concrete,” 
in recognition that digital infrastructure is increasingly becom-
ing as important as physical analogs (LADOT 2020). LADOT’s 
Technology Action Plan asserts that the development of a 
digital culture requires investment in personnel’s skills and 
familiarity with key technologies. 

While many planning practitioners are familiar with tools 
such as GIS, skills gaps in practice are emerging as modern 
technologies and civic analytics methods require new capac-
ity in software expertise in technologies such as Python, R, 
JavaScript, SQL, and other tools (NACTO and IMLA 2019; Kon-
tokosta 2018). Filling these skills gaps is critical to organizations’ 
abilities to create value from the data they manage, ask the 
right questions of vendors during procurement, and commu-
nicate important touchpoints between technology and public 
process (NACTO and IMLA 2019; Kontokosta 2018). It is critical 
that planning professionals be informed consumers for the 
communities they serve (ITF 2019; Dimina 2019). 

Explainability and Accountability in Public Policy
As noted above, when setting public policy, the decision-mak-
ing process is just as important as the decision itself (Mayson 
2018; Agontinelli 2021; Andrews 2019; Waddell 2011). But while 
machine-learning algorithms have demonstrated themselves to 
be quick and effective, often by their very nature they are not un-
derstandable or explainable—even by those who develop them. 

For example, deep-neural networks and their relatives have 
known tradeoffs between their performance and the degree 
to which they can trace the basis of a prediction (Kontokosta 
2018; Agostinelli 2021). This makes some of the most complex 
models very difficult to audit relative to simpler statistical mod-
els (i.e., linear regression). Thus, even if technology companies 
would allow planners to subject their software to external 
scrutiny, the degree to which any information could be derived 

from these “black-box algorithms” should be expected to be 
limited. This aspect of complex machine-learning algorithms 
makes them difficult to apply for major decisions in public 
policy contexts where explainable, verifiable, and accountable 
results are required (Barredo Arrieta et al. 2020; ITF 2019). 

The planner’s role in holding private companies account-
able to the potential harms and risks associated with the 
deployment of AI-infused algorithms is more complex. The 
development of “explainable AI” (XAI) or methods to audit 
algorithms is an area of intense research and policy innovation 
(OECD 2021a; Barredo Arrieta et al. 2020). 

The OECD AI Policy Observatory has compiled several 
publications that point to technical, procedural, and educa-
tional resources and tools that can be used to check for bias or 
robustness of AI systems and inform risk management guide-
lines (OECD n.d.). For example, given the centrality of data to 
the operation of machine-learning algorithms, some of the 
highlighted tools identify how to audit the underlying data 
used to train them (Gebru et al. 2021). Researchers in collab-
oration with Microsoft see a world where datasets come with 
datasheets that identify their operating characteristics, test 
results, recommended usage, composition, and other traits to 
increase transparency and accountability within the realm of 
machine learning (Gebru et al. 2021). The ability to audit algo-
rithms and data is critical to any planner seeking to understand 
how to reduce the risks and harms applied AI could have on 
their communities. 

Representation and Bias
Algorithmic bias and representation in machine-learning 
models have the potential to reinforce social disparities in 
communities when incorporated into business, administrative, 
and civic systems (Mayson 2018; Crawford 2021). 

The composition and quality of training data used to build 
these models directly influence their performance (ITF 2019). 

Figure 15. Public engagement platforms such as Engagement HQ can classify unstructured text from public comments into positive and 
negative sentiments and emotion classifications (Bang the Table)

https://ladot.lacity.org/projects/transportation-technology
https://ladot.lacity.org/projects/transportation-technology
https://oecd.ai/en/
https://www.bangthetable.com/engagementhq-community-software/
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Machine-learning models learn patterns from data—thus, 
when the data is biased, so are they (Mayson 2018). Generally, 
this bias comes in two forms: 

•	 Biased training data: a machine-learning model will inherit 
the underlying biases or historical discrimination embod-
ied in training data (Gupta et al. 2021; ITF 2019) 

•	 Accuracy disparity: A machine-learning model will per-
form more accurately on some groups relative to others. 
This can result from the composition of the training data 
having large asymmetries in how well distinct groups are 
represented in the dataset compared to others (ITF 2019; 
Yigitcanlar et al. 2020). 

Both are connected to the underlying data used to gen-
erate predictive algorithms—but also to the blind spots of 
those constructing a predictive system. The act of classifying or 
counting something involves a preconceived notion of what is 
worth counting or classifying (Crawford 2021). Whether special 
attention is paid to how well vulnerable communities are 
represented in both data and in technology communities will 
influence who benefits from these technologies and who is left 
behind (Hurtado et al 2021).

A core concern for bias in algorithmic decisions is that it can 
enable institutional discrimination at massive scales (Mayson 2018). 
Even slight bias aggregated across a software system or planning 
tool could influence more decisions than any one individual. On 
the other hand, cognitive bias and irrationality in human judge-
ment is held to a lower bar of accountability (Mayson 2018). 

In theory, the operations and outputs of algorithms can 
be inspected to measure their bias, a task difficult to achieve 
for human decision-making in practice (Mayson 2018; OECD 
2021a). Algorithmic risk assessments are clearly needed to 
understand the potential impacts of algorithms’ integration 
into our civic institutions and planning systems (ITF 2019; 
Mayson 2018). 

When Past Should Not Be Prologue 
Planning requires thinking about how policies and public 
investments shape potential pathways for community futures 
(Wright 2019). Statistics and machine learning will develop 
predictive models for the future based on past data, and by so 
doing the insights created from them use the past as prologue 
(ITF 2019; Mayson 2018). There are two major concerns, howev-
er, regarding the application of these models:

•	 Cementing past mistakes. Basing decisions on predic-
tions from historical data is likely to repeat and reinforce 
the outcomes of the past (Mayson 2018). This can often 
follow the use of metrics or data that are convenient or at 
hand, with outputs reinforcing historic values or creat-
ing unintended outcomes (Crawford 2021). Predictive 
models can mirror how we have historically addressed 
problems rather than reflecting the lens we bring to them 
now (Mayson 2018). In other words, we risk automating 
processes that were problematic to begin with because 

they will “inherit” the analytical frame of the system they 
originate from. 

•	 Managing change. Predictions based solely on historical 
data will not adapt to changing conditions. For example, a 
planning challenge likely to define the 21st century will be 
planning for a changing climate. As of 2019, carbon dioxide 
concentrations not seen for two million years are clear 
examples of how pure machine-learning models may not 
provide as much value in an environment where conditions 
change (IPCC 2021). 

For these reasons, care should be taken when these algo-
rithms are applied in situations with high degrees of uncertain-
ty or unprecedented circumstances, or where they are likely to 
reinforce undesirable historical outcomes.

Error Minimization Is Not Zero Error
A key aspect to understand about applications leveraging ma-
chine learning is that as statistical engines, they work through 
the minimization of measures of error in their predictions, often 
called loss (Google 2020; Ding 2020). 

The errors that can occur in machine-learning systems 
have analogues to those from statistics, such as false positives 
and negatives, but some are more complex (Ding 2020). For 
example, technologists at Numina have documented many of 
the errors that can occur for computer vision-based street-level 
observation. These include detection errors, when an entity is 
misidentified in the image or in the wrong location; classifica-
tion errors, when an identified entity is misclassified as another; 
and tracking errors, when an entity is correctly detected or 
classified, but a break in its path tracking occurs and inflates 
resulting entity counts (Ding 2020). 

When planners consider the potential integration of ma-
chine learning into infrastructure or processes, its application 
should be judged from an understanding of consequences 
to individuals or the public if it is wrong (ITF 2020; Mayson 
2018). For example, planners working on an AI-derived asset 
inventory project can set aside time for manual review if there 
are some paths incorrectly classified as sidewalks or company 
logos on vans misclassified as stop signs. However, integration 
with sensitive or critical infrastructure deserves more scrutiny. 
Real-world consequences can follow from prediction errors, 
with a poignant example being the role of classification error in 
an autonomous vehicle’s motion planning that led to the tragic 
death of a pedestrian in Tempe, Arizona (NTSB 2018). 

Data Protection and Privacy
Machine learning-based applications depend on data to 
function. How this data is collected, managed, and secured can 
have important policy implications about data protection and 
privacy (Andrews 2019; LADOT 2020). 

Much of the recent history of machine-learning benchmark-
ing datasets has been defined by a lack of consent of those 
captured to train new algorithms. For example, the DukeMTMC 
project for multitarget facial recognition was highly contro-
versial because it collected over two million frames of 2,000 
students walking between classes without their consent and 

https://exposing.ai/duke_mtmc/
https://exposing.ai/duke_mtmc/
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was subsequently leveraged in surveillance software (Craw-
ford 2021). While this dataset was removed from the internet 
because of the furor it caused, it is an important reminder 
that for planning purposes, data should only be collected to 
achieve specific purposes and privacy should be protected to 
the greatest extent possible (LADOT 2020). 

Certain data collection technologies, such as video capture 
and GPS traces, can collect personally identifiable information (PII) 
about the subjects they observe, which has data security and pri-
vacy implications (NACTO and IMLA 2019). Any transmitted data 
could theoretically be intercepted by an unauthorized third party 
(ITF 2019; LADOT 2020; NACTO and IMLA 2019). Security concerns 
can pose liability risks to planning departments and related pub-
lic-sector organizations leveraging these technologies. 

One way to mitigate these risks is with a “privacy by design” 
approach that protects the individuals observed from the onset 
of the data collection process, typically by collecting and keep-
ing as little data as possible to get the job done (NACTO and 
IMLA 2019; LADOT 2020; Tomer 2019). Related strategies include: 

•	 Edge computing. Instead of transmitting live sensor 
readings or images to a server to be processed, images 
or other sensor data can be pre-processed on the device 
and transmitted in an anonymized form (such as pedes-
trian or bicyclist traces or counts). This reduces the risk of 
any interception of sensitive data and protects privacy 
of those scrutinized by design. For example, traffic data 
collection company Numina’s sensor technology uses 
edge computing to process the footage it collects so that 
only AI-derived traces of user behavior are sent over the 
internet (Figure 16). This means even if data is intercepted, 
the privacy of those observed is respected by design.

•	 Anonymization techniques. Another approach that might 
be less secure but still protects privacy is to anonymize im-
ages collected by blurring faces and similar data characteris-
tics (Figure 17). This approach may still be vulnerable to data 
interception or similar risks, but it can ensure when data is 
used that verified efforts are made to protect the identity 
of those observed. All image data collection efforts should 
employ at least this level of privacy protection.

Data Ownership and Licensing
In many cases, firms providing AI-derived data or services treat 
their data and related products as a competitive advantage. 
This view of their products can limit transparency into how the 
data is derived and may limit how planners can use the data. 

For example, data vendors and civic technology firms 
commonly provide licenses that allow use of the data without 
providing complete ownership, similar to software licenses. 
Often these data licenses will restrict how the data is used to 
prevent data sharing or even comparison to similar outputs 
from other firms. This can have significant implications with 
what role licensed data can play in open data ecosystems in 
which this data is provided to the public to increase account-
ability, transparency, and integration (Bayat and Kawalek 2021). 
The terms and conditions that apply to procurement data and 
technology services can have important implications, such as 
increasing the complexity of agencies’ data management op-

Figure 16. Numina’s sensor technology uses edge computing to provide multimodal traces of bicyclists and pedestrians using a greenway 
in Brooklyn, New York (Numina)

Figure 17. Anonymization techniques include the use of automat-
ed processes to blur faces detected in street view images (Meta 
Platforms, Inc.)

https://numina.co/


14	 American Planning Association | planning.org

PAS MEMO — No. 111

erations, reducing market competition for civic solutions, and 
limiting the transparency of data informing public decisions. 

Action Steps for Planners
Planners should consider the following recommendations to 
leverage AI responsibly in a planning context. This list is by no 
means comprehensive, but it should provide a starting point 
for those wishing to support and integrate AI applications into 
their processes. 

Take a needs-first approach to solution selection. To 
effectively apply AI, planning practitioners should start by 
identifying community or organizational needs that advancing 
AI capabilities can help meet. 

There can often be a barrage of advertising to planners for 
smart city or AI applications that can be classified as solutions 
in search of problems. The most effective applications of 
these technologies are often developed in response to extant 
planning problems and needs. For example, many of the prac-
tice-focused applications discussed in this Memo center on how 
advancements in AI can change how we collect data. Internal 
discussions can be facilitated that center on questions such as:

•	 What gaps currently exist in our community’s data systems?
•	 Does our community already have a digitized sidewalk, 

crosswalk, or tree inventory? 
•	 Do our property appraisers have automated methods to 

identify changes to properties based on aerial imagery?
•	 How have we previously evaluated changes in perfor-

mance of changes in street design?

Develop a technology action plan. Organizations fall along 
a wide spectrum of experience regarding data transparency 
and management as well as deployment of advanced technolo-
gies. A technology action plan, such as the LADOT Technology 
Action Plan referenced earlier in this article, can help identify 
opportunities for municipal and regional governments to 
identify data sharing and digital services that can advance better 
cross-departmental collaboration and problem solving. 

Key components of technology action plans include 
guiding principles and values and a review of the skills and 
infrastructure investments required to address identified needs. 
An internal plan should explicitly state how issues related to 
investments of IT infrastructure, upskilling staff, representation, 
privacy, roles of different departments, and data ownership will 
be managed; specify an outreach plan; and identify near-term 
pilot projects to move planning into action.

Support and promote digital literacy. It is critical to 
upskill staff to be digitally literate. Planners must understand 
how the digital spheres of our lives impact the public interest 
to base decisions on them (DeAngelis et al. 2022). 

As organizations adopt civic technologies, there is an increas-
ing need for planners who can apply them to civic problems. 
Organizations can foster digital literacy in a number of ways:

•	 Support continuing education of staff regarding becom-
ing familiar with emerging technologies. 

•	 Listen to, promote, and recognize action-oriented plan-
ners willing to work between the digital, physical, and 
governance spheres of planning.

•	 Review emerging legal, policy, and regulatory resources, 
such as those provided by the OECD AI Policy Observato-
ry or Oregon State University’s Nexus.  

•	 Conduct digital needs assessments and become familiar 
with important digital services best practices from resourc-
es such as OECD’s Digital Government Toolkit, E-Leaders 
Handbook on Digital Government, and Digital.gov.

•	 Familiarize staff with key civic technology aggregators 
such as the civic technology field guide or the APA Tech-
nology Division’s urban and regional planning resource 
page. These pages link to rich collections of different tech-
nology service providers, tools, data, and vendors. 

Support experimentation. Innovation requires nurturing 
systems that encourage it. Planners should help their organiza-
tions identify and eliminate barriers to entry for procurement 
contracts. 

Conventional procurement processes can demand exten-
sive experience requirements or a high degree of specification 
regarding how tasks are done that bias procurement toward 
incumbents who provide tried-and-tested solutions (Ortmans 
2015). Constructing scopes of work and vendor requirements 
for projects and programs that don’t exclude start-ups and 
creative approaches is an important step towards supporting 
more public-sector innovation. Consider pilot projects, internal 
team trainings, technology exchanges, university partnerships, 
coordinating with programs supporting young companies, and 
“entrepreneur-in-residence” programs. 

Plan for real-time expectations. The transportation sector 
is already seeing a revolution in expectations regarding how 
systems are expected to adapt to changing needs almost 
instantaneously. The pace of processing and the expectation 
of quickly informed decision-making is taking place across 
the economy, and its influence on the expectations of civic 
processes including planning, zoning, and permitting will likely 
be hard to ignore. These expectations are quite acute when we 
consider how planning systems need to respond to post-disas-
ter crises in a world undergoing climatic shifts (IPCC 2021). 

Planners need to balance the careful long-term thinking 
required for comprehensive planning activities with the chang-
ing expectations of developers and the public for accessible 
and agile “front end” planning processes. 

Consider the reversibility principle. The reversibility 
principle holds that when we consider deploying a new tech-
nology, we prioritize the application of products and processes 
whose negative impacts will cease when withdrawn. 

As with other new technologies, to maintain urban resil-
ience, initial applications of AI should be made in investments 
whose impacts are reversible. Initial deployments of AI tech-
nology for civic purposes thus should be guided by the ability 
to back out of agreements, manage risks, and ultimately cease 
the application of these technologies if negative impacts are 
outsized relative to benefits. This might mean working with 

https://ladot.lacity.org/sites/default/files/documents/ladot-tap_january-2020-update_v2.pdf
https://ladot.lacity.org/sites/default/files/documents/ladot-tap_january-2020-update_v2.pdf
https://oecd.ai/en/
https://oecd.ai/en/
https://www.urbanismnext.org/the-nexus
https://www.oecd.org/governance/digital-government/toolkit/
https://doi.org/10.1787/ac7f2531-en
https://doi.org/10.1787/ac7f2531-en
https://digital.gov/
https://civictech.guide/
https://github.com/APA-Technology-Division/urban-and-regional-planning-resources/blob/main/README.md
https://github.com/APA-Technology-Division/urban-and-regional-planning-resources/blob/main/README.md
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subscriptions through vendors that are easier to cancel and 
avoiding deep integrations into mission-critical systems, such 
as emergency services.

Develop and support machine-readable regulations 
and codes. Planners should actively work to develop open and 
machine-readable regulations and codes to prevent misalign-
ment between third-party interpreters and the actual law. This 
means finding ways to digitally distribute the rules behind 
policies—ideally, using accessible text formats such as HTML, 
XML, and Markdown alongside or instead of PDFs.

The ability of the planning profession to maximize the 
benefits of civic AI will depend on our ability to develop con-
sensus-based standards defining the digital representation of 
zoning codes, curbside regulations, street layouts, bike facilities, 
easements, and other legal constructs. Planners should actively 
seek to increase their awareness of relevant data standards and 
support their adoption if those standards can support planning 
in their communities. 

Adopt data standards and consider interoperability and 
system integration. One of the benefits of AI-derived data 
is that it provides a repeatable, scalable, and standardizable 
approach to collecting data of a potentially arbitrary definition. 
However, much of this benefit will be lost if planners do not 
proactively define what is needed to solve planning problems 
and standardize it. 

If every region reinvents the wheel when developing solu-
tions, the shared value created by emerging AI algorithms will 
be slow to realize. Sharing standards and templates for quality 
assurance approaches could go a long way towards ensuring 
that planners have baseline methods to assess AI-derived data. 

Similarly, for communities and planning processes to 
see tangible benefits from most advances in software and 
technology, solutions need to provide integrated workflows 
across multiple stages of the planning process and encourage 
collaboration across departments. This challenge is particularly 
salient when considering the need for solutions to address 
problems across different spatial and temporal resolutions and 
between disciplines. 

Prioritize ethics, equity, and privacy protection in im-
plementing AI. Special attention should be given to applica-
tions related to understanding how AI systems will influence 
outcomes for vulnerability community members as part of 
planning processes. This consideration extends to how AI 
systems are developed and deployed within public and private 
systems within our communities. 

For civic applications of AI to be politically acceptable, planners 
should directly address the public about privacy. All stored data 
derived from AI systems should actively have PII stripped from it.

Consider bias and representation. Planners have a role in 
working to establish fair civic processes and apply AI responsi-
bly, if at all. This will mean paying careful attention to whether 
open-source solutions provide documentation on the steps 
they followed to have well-represented training datasets. When 
working with technology providers, planners can ask whether 
their models were trained on datasets that were developed 
with inclusive representation in mind. 

Understanding who an algorithm leaves behind means 
identifying methods to audit algorithms and asking questions 
about the curation process and composition of training data. 
Planners should support calls for greater transparency in the 
development processes of machine-learning datasets through 
the creation of datasheets that identify important questions 
that help inform planner’s assessments of the potential for 
algorithmic bias (Gebru et al. 2021). 

Actively develop training data. Data comes in many 
forms and contexts, including audio and imagery sources—not 
just conventional tabular or GIS data. Planners can help define 
what should be digitized, what should be made public, and 
what should be protected. They should prioritize the use of 
data collection processes that protect privacy, are resource 
efficient, and avoid exploitative crowdsourcing systems. Re-
member that machine-learning algorithms require much larger 
training set sizes than conventional statistical techniques, and 
so either automated data acquisition or partnerships with 
neighboring or similar communities may be required to get to 
useful sample sizes. 

A promising area for exploration is the development of 
planning-specific synthetic datasets comprised of data from 
renders of virtual worlds or generative algorithms (Andrews 
2021). For example, a 3D model of street-oriented buildings 
and buildings set back from their frontage could have renders 
taken from multiple angles to train a computer vision algo-
rithm to identify the differences between them, irrespective 
of perspective. Datasets such as Cityscapes and Synthia are 
examples of rendered datasets that suggest how data for cities 
can be designed to support planning-specific problems (An-
drews 2021; Nikolenko 2019).

Conclusion
A world governed by algorithms has immense promise and 
peril. Machine learning has the potential to create insights and 
inform decisions in a world awash with data, changing plan-
ning practice across multiple specializations. 

As AI-infused technologies interweave into practice, 
planners will need to retain their focus on how to facilitate 
desirable long-term community outcomes and their willing-
ness to tackle the complexity so entangled with the wicked 
problems that planning endeavors every day to confront. The 
key breakthroughs in AI can help communities digitize their 
infrastructure or land use, reinvent urban observation, forecast 
alternative community futures, inform decision-making, accel-
erate design processes, and help read the room during public 
engagement and public deliberations. 

On one side, we can envision digital twins that help with 
projecting the intended or unintended consequences of in-
terventions or policies so we can chart informed pathways for 
better community outcomes. On the other, naive application 
of these technologies can pose risks to community resilience, 
reinforce existing inequities, yield poor returns, and erode 
community trust. 

These divergent views of AI’s role in future decision-making 
are a reminder that the act of prediction is a mirror. Its reflec-

https://www.cityscapes-dataset.com/
https://synthia-dataset.net/
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tion is more than a single inductive inference—it is an image 
of our collective past and values. If we do not like what we see, 
it can be interpreted as a judgment of ourselves as well as the 
technology’s application. Planners’ roles in civic decision-mak-
ing give them some influence and agency of what this collec-
tive image looks like, and it starts by bringing a critical lens to 
questions about the data, values, and motivations enveloping 
what we collectively understand as AI. 
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