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The term “artificial intelligence” (Al) conjures images of auton-
omous vehicles maneuvering through streets, smartphone
assistants that answer your questions, or androids exploring
final frontiers.

At a basic level, however, Al can be understood as the mul-
tidisciplinary endeavor to approximate human reasoning with
computation. For planners, it represents an emerging toolbox
that enables a range of new capabilities—from the scalable
digitization of physical infrastructure to tools that can help
planners synthesize and summarize public feedback (Figure 1).

The rapid advancement and integration of such techniques
into daily life are increasingly influencing planning practice and
our communities at large. Whether Al primarily benefits entire
communities or narrow interests, though, depends on plan-
ners'abilities to engage with the challenges and opportunities
surrounding its civic applications. Naively applied, these technol-
ogies can automate discrimination, create unaccountable pro-
cesses, and create a false certainty about what the future holds.

This PAS Memo intends to equip planners with an under-
standing of Al concepts and their potential implications.

Figure 1. Al offers planners an emerging toolbox enabling a range of
new capabilities, including the transformation of raw imagery and
data feeds into living digital views of our world (David Wasserman)
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Additionally, it will discuss important considerations regarding
Al applications and their roles in larger trends connected to
digital governance and civic data in planning.

Wide availability of this technology is still very new, but it
is powerful and fast moving. Planners have a responsibility to
understand the implications of the technologies they choose
to deploy, and, with understanding, they can help to ensure
that these technologies are used responsibly.

Background

The field of Al research began in the 1950s. Early investigations
included a paper by Alan Turing, the British mathematician
considered the father of computer science, exploring wheth-
er computers can think, as well as a 1956 U.S. Department of
Defense-sponsored conference at which the term “artificial
intelligence” was coined (McCarthy 2012). The field kicked off in
earnest, however, when the first microprocessors were devel-
oped in the 1970s.

One of the first applications of Al was symbolic Al, such as
expert systems, which sought to encode the decision-making
capacity of experts in complex sets of handcrafted rules. This
required heavy involvement from industry experts, and low
returns led to a series of "Al winters”in which research and
funding in the field withered for decades (McCarthy 2012).

Everything changed in the early 2010s. New advancements
in Al were driven by three intersecting factors:

¢ Advent of robust techniques. “Deep learning”kindled
a renaissance in the subfield of machine learning, the
study of algorithms that improve with experience (Council
of Europe 2020; Singh 2019). Deep learning provided a
generalized set of machine-learning algorithms loosely
inspired by neurons in the brain. This enabled a rapid,
extreme improvement in complex, multidimensional
pattern-matching—allowing computers to find patterns
in complex and multidimensional data such as images and
audio (Singh 2019).
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*  The data revolution. For machines to learn from experi-
ence, many known methods require access to big datasets
to “train”them on. Social media, the increasing maturity of
the Internet, and the digitalization of the human expe-
rience contributed to availability of examples for model
training (Council of Europe 2020; Singh 2019).

* Improvements in computing hardware. The same
graphics processing units (GPUs) that enabled video
games to become an American pastime massively
reduced training time for huge datasets. Researchers’
experiments could take minutes, rather than weeks, by
leveraging modern GPUs and advanced cloud computing
infrastructure to drastically increase parallel processing
capabilities (Council of Europe 2020; Singh 2019).

Combined, these advances enabled computers to learn by
example, creating a new computer programming paradigm.

Learning by Example

When software developers write a program, their code pro-
cesses input data to create an output using human-crafted
instructions. Machine learning reverses this logic: it combines
input and output data to create a program.

Machine learning provides a set of automated methods that
do not require substantive domain knowledge other than that
encapsulated in the training examples. In this sense, it is con-
ceptually more akin to statistics than to conventional coding.
However, there are two critical differences.

First, unlike statistics, machine-learning methods are not
limited to highly structured numerical data. They have robust
performance when working with complex multimedia files
including images, video, and audio (ITF 2019; Singh 2019;
Crawford 2021) and can accurately relate examples from those
formats to arbitrary output concepts (Ding 2020; Singh 2019).

The second difference is in the volume of data required.
Statistics can typically be run on dozens to hundreds of sam-
ples; complex machine-learning models often require millions.
This, in turn, implies that most models must initially be trained
somewhere by someone with access to enormous quantities
of training data and thus require large computational capa-
bilities. While cloud computing allows even small planning
departments access to high-performance computing, this last
requirement is often a binding constraint.

A Digital Foundation
The “data hungriness” of machine-learning models is the per-
haps the biggest impediment to their use in planning. In some
cases, training data can be gathered from routinely digitized
data such as administrative records or synthesized in game
engines used in the video game industry (Andrews 2021). In
others, though, human hand-annotation is required, which
sharply limits scale. While there are innovative techniques that
can reduce the data required to develop these models, data re-
mains central to how Al works (Jain et al. 2011; Crawford 2021).
Many communities still use analog steps (e.g., physical
paper) for key planning processes (e.g., building permitting).

Important Terminology

e Algorithm - a set of specific steps to perform a
well-specified task. Algorithms typically take in some
input and then apply a process to create an output.

*  Algorithmic bias — systematic and repeatable errors in a
computer system that create unfair outcomes, typically
privileging one group of users over others.

* Artificial intelligence — a simulation of human intelli-
gence and reasoning.

e Civic analytics - the application of advanced data
mining, modeling, and analysis techniques to enable
data-informed and evidence-based decision-making in
urban and regional operations, policy, and planning.

e Computer vision — a field that focuses on how computers
can gain high-level insights from digital images or videos.

* Digitization — the conversion of data and documents
into a computer-readable format.

* Digitalization — the conversion of analog processes
to digital experiences. This can make a process more
transparent, accessible, and convenient while enabling
easier reporting and analysis of incoming information
to guide decision-making.

* Digital twin - a digital representation of the built envi-
ronment or system. A smart city digital twin is continu-
ously updated with real-time data and analytics on inter-
actions between humans, infrastructure, and technology
to create a living digital representation of a city.

*  Machine learning — algorithms based on applied sta-
tistical models that can learn without following explicit
instructions. These base decisions on inferences drawn
from patterns in data.

*  Natural language processing — a subfield of linguistics,
computer science, and artificial intelligence that that
focuses on how computers can derive understanding
from natural language.

*  Personally identifiable information — any information
that can be used to distinguish or trace an individual’s
identity, either alone or linked with other correlative
datasets. This can include identifiers such as names and
social security numbers, but it can also include mobile
GPS data or sequenced images.

e Training data — labeled datasets input to supervised ma-
chine-learning models to teach them relationships they
can infer from the data. A prototypical example is a collec-
tion of images labeled by what they contain in a separate
spreadsheet. The quantity, quality, and degree of repre-
sentation in these datasets has important implications
for how the models created from it perform in real world
applications and the degree of bias they operate with.

*  Urban informatics — the study of urban phenomena
through an evidence-based framework of urban sensing,
data mining and integration, modeling and analysis,
and visualization to advance methods in computational
sciences and address urban and regional challenges.
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Figure 2. Online permitting by city size (Riggs et al. 2019)

Data gathered in this way can't be directly used with Al tools
until it has been digitized (DeAngelis et al. 2022; Miller 2021).
Local governments may be able to obtain digitized data from
vendors and other sources, but they still need the capacity to
maintain and leverage it to inform decision-making. Before
cities can apply Al to specific areas of planning practice, then,
they typically need foundational investments in data infrastruc-
ture to build the institutional capacity to manage it (Hurtado et
al. 2021; Kontokosta 2018).

Some work in this area has already been done through
the digitization of planning-relevant data and digitalization of
its processes and systems. What began with GIS (Klosterman
1999) has evolved into a rich ecosystem of web maps, data
vendors, open data portals, and online engagement systems
that hint at entirely new governance models in planning (Bayat
and Kawalek 2021; Hurtado et al. 2021).

However, progress has been uneven. The 2019 Technol-
ogy Benchmarking survey conducted by the University of
San Francisco and Urban Insights of 600 cities found that all
surveyed planning departments now have websites, indicating
progress in providing information, but other components of
the survey suggest a slower pace of digitalization in the plan-
ning process. For example, 53 percent of surveyed cities do not
provide online permitting (Figure 2), and 72 percent have no
open data portal on their city websites (Figure 3) (Riggs et al.
2019).

Consequently, much data related to the planning process
is hard to access, siloed, or not being collected at all (Dimina
2019; Riggs et al. 2019; Noardo et al. 2022). For example, many
cities store data as PDFs, which are easy for humans to read—
but not computers. Most algorithmic tools can't use this data
unless it is processed into a form they can read, like a database
or text formats like HTML/XML (Noardo et al. 2022).

As data is central to Al, planning digitalization is an ongoing
process that is a necessary precursor to realizing value from Al
(OECD 2019; DeAngelis et al. 2022; Miller 2021). And invest-

Figure 3. Open data portals on city website by city size (Riggs et al.
2019)

ments in digitalization can also make “front desk”interactions
with the public smoother and more user focused (DeAngelis

et al. 2022). Paper permit submittals increase friction, attending
meetings in person can be inconvenient, and reviewing plans
in a static PDF is not engaging. In the long term, planning
departments’inability to reduce these transaction costs by digi-
talizing their processes can erode public support for planning
and the perception of its value (Zucker 2007).

The COVID-19 pandemic has pushed many agencies and
organizations to accelerate digital governance initiatives.

Even so, process digitalization is a challenge for the planning
profession and public-sector governance at large. Investments
in planning’s responsiveness are effectively investments in
community trust. Movement towards digital governance can
improve planners'abilities to leverage emerging technologies
to better serve their communities (Zucker 2007; DeAngelis et
al. 2022). As emphasized throughout PAS Report 599, Smart
Cities: Integrating Technology, Community, and Nature, plan-
ners must adjust planning processes to today’s digital environ-
ment and add new tools, relevant skills, and knowledge to their
repertoires, both to ensure that their communities can benefit
from digital technologies as well as to maintain the planning
profession’s relevance in an era of digital transformation (Hurta-
do et al. 2021; DeAngelis et al. 2022).

With the advent of the data revolution and wider deploy-
ment of sensors into our built environment, the growing field
of civic analytics offers higher expectations and more opportu-
nities to use data to address challenges in urban and regional
operations, policy, and planning (Figure 4, p. 4) (Kontokosta
2018; Tomer 2019). These changes in data systems and new
policy challenges have prompted cities to invest in cross-agen-
cy data sharing, mandate open data, and identify new roles in
local government, such as chief data officer (Kontokosta 2018;
OECD 2019). Additionally, governments are increasingly finding
uses for emerging smart city solutions, civic software, and big
data providers (Kontokosta 2018; Bayat and Kawelek 2021).
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Figure 4. Civic analytics can assist with a broad spectrum of challenges within operations, policy, and planning for cities and regions

(adapted from Kontokosta 2018).

Data’s role in decision-making is likely to grow. Planners will
benefit from an increased awareness of its potential applica-
tions, what gaps exist in their available data, as well as how to
share, distribute, license, and manage it.

Al Applications for Planning Practice

These advancements in computer science, machine learning,
and digitalization are creating an emerging Al toolbox that
can extend planners’ capabilities and complement their skill-
sets. Al can help planners improve data collection, forecast
alternative futures, inform decision-making, and accelerate
Creative design processes.

Digitization of Infrastructure and Assets
Inventories of the built environment enable planners to under-
stand the state of existing infrastructure relative to the needs

of their communities (Wasserman 2020; Yigitcanlar et al. 2020).
Planners typically inventory the built environment with parcel
data, manual aerial reviews, and field data collection.

While some information, such as land cover or vegetation
health, can be derived from remote sensing’s automated data
extraction techniques, more detailed components of the built
environment were once difficult to automatically digitize.
Advances in computer vision have enabled new techniques
that can transform high-resolution aerial imagery directly into
geospatial data, which can reduce costs and potential errors
common in the tedious work traditionally required to digitize
community assets.

The geospatial data and services company EarthDefine
applied advances in remote sensing to generate a one-meter
resolution tree canopy database that can be used in citywide
comparisons of tree canopy at the street level (Figure 5, p. 5).
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For comparison, the U.S. Forest Service produces a 30-meter
tree canopy dataset whose resolution is not sufficient for urban
tree canopy inventories. EarthDefine donated this data to
American Forests to generate the Tree Equity Score database,
which summarizes canopy cover at the census block group
level to help determine inequitable distributions of tree cover
within urbanized areas (American Forests 2021).

This type of extraction of data from aerial imagery can gen-
erate digital inventories of streets and other public works. For
example, in California, Contra Costa County Public Works worked
with earth image digitization company Ecopia to digitize the
public rights-of-way across large parts of the county (Figure 6, p.
6). This transformed recent imagery into a geospatial cross-sec-
tional database representing every lane, median, sidewalk, and
crosswalk and their associated widths (Ecopia 2021).

Data Standards, Open Codes, and Accessibility

When Google Maps was introduced in 2005, it shifted expecta-
tions of how we get from point A to point B (Reid 2020). Soon
after its release, Portland, Oregon'’s TriMet collaborated with
Google to identify how to represent transit systems and sched-
ules in routing and trip planning. This collaboration ultimately
culminated in the development of a new data exchange
format—the General Transit Feed Specification (GTFS). Many
transit agencies now publish GTFS data, which software pro-
viders can use to integrate transit service and schedules into
routing, mapping, and other software services (McHugh 2013).

The story of GTFS illustrates how the public and private
sectors can forge partnerships and develop data standards
that can enhance public services at scale. GTFS enabled the
creation of entirely new software, tools, and data ecosystems
that enriched our understanding of transit (McHugh 2013).

Standards like GTFS allow private-sector software develop-
ment to scale, reducing costs and market risks. For the public
sector, data standards can help planning professionals build
a shared understanding of their communities through more
robust cross-regional research and enhance public services
by establishing an agreed upon “data lexicon”that can be
used to curate technological solutions (PIA 2021; McHugh
2013; Noardo et al. 2022). In permitting and agency opera-
tions, planning standards can be used to facilitate smoother
transactions with users and the public, while on the back end
they can be used to construct planning scenarios or provide
consistent data across regions that can be used to train ma-
chine-learning models. And when software tools are based
on standard data formats, they are more accessible to smaller
communities—instead of needing to create a new tool to
solve a common problem, communities can publish their
own data in the same format to benefit from the work that
has already been done.

What can planners do to improve this situation? Some use-
ful principles have been developed by the Planning Institute
of Australia (PIA):

Figure 5. EarthDefine’s one-meter resolution tree canopy database
used by American Forests to generate the Tree Equity Score data-
base (American Forests)

Planning however is work in the public interest .... It is import-
ant that the digital planning platform to be provided as public
infrastructure, governed in the public interest and using open
technology, including:

*  Machine readable digital content: Ensure that content
published and procured in public planning processes
is easily processed by computers (machine readable),
including the data and methods contained within them.
Ideally, content is provided in accessible formats (i.e., XML
and HTML) which are provided in addition to or instead of
PDF files.

* Standardization: Standards should be developed for
common language, processes and data in order to enable
collaboration across jurisdictions.

* Opendata: All non-sensitive data produced within public
planning processes should be made available as open
data, including development approvals data and 3D and
4D modelling publicly procured for digital twin develop-
ment. Processes for the handling of sensitive data must be
maintained.

*  Open rules: Computer code representing planning rules
used in automated or assisted public decision-making
processes should be made publicly available.

*  Open-source code: Where public funding is used in the
development of new digital tools, these should be provided
as open source to enable reuse across different agencies
and authorities. Grants should be provided, and collabora-
tion encouraged between different authorities so that no
one agency disproportionately bears the cost of software
development.

These principles represent key changes required for planning

practice to enable frictionless interactions, digital transparency,
and cross-jurisdictional collaboration (PIA 2021).
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Beyond aerial imagery, street level images from Google
Street View and Mapillary are increasingly being used to
digitize assets such as streetlights and stop signs that might
be more difficult to reliably detect in aerial imagery. As part of
a mobility plan, Alta Planning + Design used Mapillary to aid
network screening and verifying a crosswalk inventory created
by Ecopia in Mount Shasta, California (Figure 7).

Such scaled-up geolocated digital representations of the
built environment can be used to create “digital twins" support-
ing informed decision-making, effective stakeholder engage-
ment, and robust scenario-planning practices.

Urban Observation
Machine learning can now derive meaningful insights
about how people interact with the built environment from

Figure 6. Contra Costa County’s
digitization of its rights-of-way
(Ecopia)

Figure 7. A sign inventory creat-
ed for Mount Shasta, California,
showing where Al detected stop
signs (Meta Platforms, Inc.)

standard street-level cameras. The resulting data can show
real-time or aggregate metrics of impact before and after
policy and design interventions, helping to determine their
effectiveness.

The qualitative observations once carried out by the likes
of Kevin Lynch and William Whyte can now be automatically
captured and surfaced as data feeds. These feeds can address
key problems for emerging areas of concern to planners, such
as managing the growing and competing demands for curb
space in cities (DeAngelis et al 2022).

As an example, curbside management analytics firm

Automotus provides curbside monitoring services based on

computer vision-derived observations of curbside users like
delivery drivers, pedestrians, taxis, transportation network com-
panies, and other user groups (Figure 8, p. 7). Its technology
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Figure 8. Computer vision can derive counts of delivery trucks, people,
and other curbside users to better manage the curb (Automotus)

can provide real-time activity data and help with enforcement
of new policies, such as piloting zero emissions delivery zones
to help incentivize commercial adoption of electric vehicles
(Automotus 2021).

This allows planners to empirically test the impacts of
different physical or policy-based interventions in transporta-
tion, urban design, and other areas at a lower cost and more
comprehensive scale than ever before. As more and more
sensors are deployed in urban environments—in connected or
autonomous vehicles, driver assistance systems, traffic cameras,
and so on—the velocity and scope of new Al-derived insights
for urban observation is likely to increase in the years ahead
(Bayat and Kawelek 2021; Wasserman 2020).

Applications already seeing deployment include moni-
toring for parking occupancy, proactively evaluating safety,
and multimodal counts (Wasserman 2020; Ding 2020). For

example, Toronto's pedestrian projects team was challenged
to measure the effectiveness of an upcoming curb modifica-
tion. The city worked with software and services firm Transoft
Solutions to transform the footage from temporary cameras
to trajectories and incidents three days before and after the
curb radius reduction, tracking conflict rates and the speed of
turning vehicles involved in a conflict (Figure 9). The result-
ing data showed that the intervention decreased high-risk
conflicts by 30 percent.

Digital Twins and Digital Futures
Smart city digital twins offer a digital replica of a city or region
that takes in real-time data feeds and relays insights about the
interactions between humans, infrastructure, and technology
(Hurtado et al. 2021; Mohammadi and Taylor 2020; Adler 2016).
These digital replicas can leverage advanced modeling to
inform community narratives or illustrate scenarios to help the
public understand the ripple effects of planning policy (Mo-
hammadi and Taylor 2020). Just as the early applications of Al
in urban planning were used to model future land-use change,
smart city digital twins promise the ability to model a wider
range of digital futures (Jain et al. 2011; Hurtado et al. 2021).

When planners make forecasts of the future to identify
future local or regional community needs, using empirically
valid and transparent methodologies is critical for stakeholder
buy-in (Waddell 2011). Simulations model systems based on
our understanding of the world to imitate their behavior and
predict their effects (Adler 2016; Waddell 2011). For nearly a
decade, the integrated land-use and transportation simulation
model UrbanSim has been used by metropolitan planning or-
ganizations (MPOs) to build regional forecasts of potential land
use, population, employment, and other changes based on
projections and expected transportation investments (Figure
10, p. 8) (Waddell 2011).

Applications like UrbanSim exemplify the potential of inter-
disciplinary simulation models operating on digital replicas of

Figure 9. Temporary camera footage from Toronto shows conflict hotspots detected before curb radius reduction (left) and after curb

radius reduction (right) (Transoft Solutions (ITS))
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land and infrastructure to identify possible futures for commu-
nities and regions.

Decision Support Systems

Decision support systems are information systems or inter-
active tools that help organizations make informed decisions
about underspecified problems using frameworks that are flex-
ible and adaptive (Snow 2021). In the future, decision tools may
help with investment prioritization or help automate much of
the tedious work in evaluating developments, zoning requests,
or similar administrative procedures.

The use of checklists, complicated prioritization tools, or
algorithmic decision tools to combat inconsistency and bias
in policy decision-making is not unfamiliar to planners (Snow
2021; Wright 2019). Planning processes must not be “arbitrary
and capricious”in either legal or political contexts (Snow 2021;
Wright 2019). Having structured and fair processes to evaluate
development proposals, their conformance to plans and codes,
and their impact on the community is a regular part of devel-
opment review or design evaluations (Zucker 2007). Recent
publications have acknowledged the consistency and pro-
cess benefits of algorithmic decision tools in zoning, such as
scoring, and evaluation criteria used to evaluate development
proposals and rezoning requests (Wright 2019).

For the development review process, Al-based tools could
act as a type of inferential glue that connects digital submittals
using Building Information Modeling (BIM), local GIS data, and
evaluation criteria to more quickly evaluate development im-

Figure 10. UrbanSim’s Urban-
Canvas web-based application
aids with integrated land use
and transportation modeling
(UrbanSim)

pacts, benefits, and conformance to local plans or permitting
requirements (Figure 11). The automation and digital evalua-
tion process could enable development review processes that
are more nimble, responsive, and better integrated across de-
partments and disciplines (Noardo et al 2022). Digital permit-
ting systems such as CivitPermit are claiming to augment the
permitting process by leveraging Al and GIS-BIM integration to
facilitate more efficient and integrated evaluations (Soft Tech
2021; Noardo et al 2022).

Existing tools already used by planners might offer further
capabilities for automated evaluation of metrics given a set of
scenarios or designs. For example, ArcGlIS CityEngine is known
for providing planners a powerful set of procedural modeling
techniques to quickly generate 3D models of blocks, buildings,
and streets using rules that adjust based on data (number of
floors, setback requirements) (Figure 12, p. 9) (Lechot 2020). For
each set of models generated, metrics can be derived and then
be used to “optimize”a zoning or design proposal based on
the balance of benefits and costs (Lechot 2020). Such decision
support tools that can iteratively evaluate scenarios can inform
better planning and design and identify trade-offs early on in
planning (Lechot 2020; Wright 2019).

Augmented Creativity

The importance of visual communications is not lost on plan-
ners, who use maps and 3D models to inform public narratives
to guide policy decision-making. Creative applications of Al
enable the generation of images and 3D content at incredible

Figure 11. Regulatory and permitting processes have evolved from paper-based evaluations to digitally integrated BIM-GIS evaluation

systems (Noardo et al. 2022)
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Figure 12. Esri’s ArcGlIS CityEngine’s procedural runtime can be used alongside optimization routines to identify different design scenarios
given a set of zoning and design constraints (Camille Lechot, Esri R&D Center Zurich)

speeds (NVIDIA 2021; Nishida et al. 2016; Anderson 2021). This blocks of color. As it stands, companies such as Adobe are

provides users with the ability to create increasingly complex increasingly integrating Al capabilities into their software

visualizations and designs iteratively and efficiently. so users can replace the sky of one image with another,
NVIDIA Canvas is a prototype application that uses Al change background lighting, or automatically select the

to transform rough sketches and blobs into photorealistic subject of images (Adobe 2019). This could enable planners

landscapes (Figure 13). In the future, image editors could and urban designers to create more engaging visualizations

create highly detailed landscape visualizations from simple faster and at lower cost.

Figure 13. NVIDIA Canvas transforms rough sketches and blobs into photorealistic landscapes (NVIDIA)
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Figure 14. Researchers trained Al models to connect rough pencil-sketched images to shape grammars, transforming them into more

complex and sophisticated 3D models (Nishida et al. 2016)

Similarly, machine learning-infused parametric design ap-
proaches are being developed within the worlds of architecture
and urban design that enable more rapid prototyping of differ-
ent design scenarios and space configurations (Anderson 2021).
Researchers tested a framework in which Al models were trained
to connect rough pencil-sketched images to shape grammars
that transformed them into more complex and sophisticated 3D
models (Figure 14) (Nishida et al. 2016). Future applications could
quickly translate rough sketches into more complete 3D models
for planning communication and urban design.

When combined with the simulation and visualization po-
tential of modern game engines, these approaches could allow
planners to go more quickly from a design scenario idea to a
fully rendered and interactive vision for a plan or project.

Reading the Room
How governments facilitate public deliberations on deci-
sions remains one of the most contested topics in municipal
governance and beyond (Williamson et al. 2004; Arnstein
1969). Advancements in natural language processing (NLP) are
enabling new methods “to read the room”when governments
are getting feedback from the public (Eggers et al. 2019).
Planners'understanding of their communities’ needs is
informed by understanding the public's comments in public
meetings, charettes, web-based engagement applications,
participatory budgeting exercises, and other forms of deliber-
ation (Williamson et al. 2004; Denker et al. 2021). Connecting
with communities helps planners understand the pace of trust
for public actions and provides opportunities to earn it at a time
when it is historically low (Brenan 2021).
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When COVID-19 forced many public engagement and
deliberation activities online in early 2020, there were already
a considerable number of tools to create digital public forums
(Denker 2021; Fedorowicz 2020). But online engagement tools
are increasingly leveraging advancements in NLP to quickly
synthesize components of people’s feedback, such as their
sentiments towards projects, or identify similar areas of feed-
back (Figure 15, p. 11) (Denker 2021; Fedorowicz 2020; Eggers
et al. 2019). This can help planners synthesize large amounts
of unstructured public comments when more open-ended
feedback is desired (Eggers et al. 2019).

Considerations for Al and Planning

Al opens new possibilities for planning practice, but it requires
awareness of the technological foundations underpinning
planning methods and practice and acknowledgment of the
risks associated with Al and related emerging technologies
(OECD 20214a; Tomer 2019). Responsible and effective applica-
tions of Al in urban planning practice will depend on planners’
understanding of these issues.

The following sections introduce planners to important
considerations regarding the use of Al and the digitalization
of planning practice. Readers are encouraged to consult the
resources cited throughout these sections for more in-depth
guidance on these topics.

Digital Skills Gaps

Both digital transformation and the informed application of Al
technologies in planning practice will require new skills (Dimi-
na 2019; Yigitcanlar 2020; Hurtado et al. 2021). Agencies such as
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Figure 15. Public engagement platforms such as Engagement H
negative sentiments and emotion classifications (Bang the Table)

the Los Angeles Department of Transportation (LADOT) have
gone as far as to adopt the mantra, “Code is the new concrete,’
in recognition that digital infrastructure is increasingly becom-
ing as important as physical analogs (LADOT 2020). LADOT's
Technology Action Plan asserts that the development of a
digital culture requires investment in personnel’s skills and
familiarity with key technologies.

While many planning practitioners are familiar with tools
such as GIS, skills gaps in practice are emerging as modern
technologies and civic analytics methods require new capac-
ity in software expertise in technologies such as Python, R,
JavaScript, SQL, and other tools (NACTO and IMLA 2019; Kon-
tokosta 2018). Filling these skills gaps is critical to organizations
abilities to create value from the data they manage, ask the
right questions of vendors during procurement, and commu-
nicate important touchpoints between technology and public
process (NACTO and IMLA 2019; Kontokosta 2018). It is critical
that planning professionals be informed consumers for the
communities they serve (ITF 2019; Dimina 2019).

1

Explainability and Accountability in Public Policy
As noted above, when setting public policy, the decision-mak-
ing process is just as important as the decision itself (Mayson
2018; Agontinelli 2021; Andrews 2019; Waddell 2011). But while
machine-learning algorithms have demonstrated themselves to
be quick and effective, often by their very nature they are not un-
derstandable or explainable—even by those who develop them.
For example, deep-neural networks and their relatives have
known tradeoffs between their performance and the degree
to which they can trace the basis of a prediction (Kontokosta
2018; Agostinelli 2021). This makes some of the most complex
models very difficult to audit relative to simpler statistical mod-
els (i.e, linear regression). Thus, even if technology companies
would allow planners to subject their software to external
scrutiny, the degree to which any information could be derived
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can classify unstructured text from public comments into positive and

from these “black-box algorithms”should be expected to be
limited. This aspect of complex machine-learning algorithms
makes them difficult to apply for major decisions in public
policy contexts where explainable, verifiable, and accountable
results are required (Barredo Arrieta et al. 2020; ITF 2019).

The planner’s role in holding private companies account-
able to the potential harms and risks associated with the
deployment of Al-infused algorithms is more complex. The
development of “explainable Al” (XAl) or methods to audit
algorithms is an area of intense research and policy innovation
(OECD 2021a; Barredo Arrieta et al. 2020).

The OECD Al Policy Observatory has compiled several
publications that point to technical, procedural, and educa-
tional resources and tools that can be used to check for bias or
robustness of Al systems and inform risk management guide-
lines (OECD n.d.). For example, given the centrality of data to
the operation of machine-learning algorithms, some of the
highlighted tools identify how to audit the underlying data
used to train them (Gebru et al. 2021). Researchers in collab-
oration with Microsoft see a world where datasets come with
datasheets that identify their operating characteristics, test
results, recommended usage, composition, and other traits to
increase transparency and accountability within the realm of
machine learning (Gebru et al. 2021). The ability to audit algo-
rithms and data is critical to any planner seeking to understand
how to reduce the risks and harms applied Al could have on
their communities.

Representation and Bias
Algorithmic bias and representation in machine-learning
models have the potential to reinforce social disparities in
communities when incorporated into business, administrative,
and civic systems (Mayson 2018; Crawford 2021).

The composition and quality of training data used to build
these models directly influence their performance (ITF 2019).
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Machine-learning models learn patterns from data—thus,
when the data is biased, so are they (Mayson 2018). Generally,
this bias comes in two forms:

*  Biased training data: a machine-learning model will inherit
the underlying biases or historical discrimination embod-
ied in training data (Gupta et al. 2021; ITF 2019)

*  Accuracy disparity: A machine-learning model will per-
form more accurately on some groups relative to others.
This can result from the composition of the training data
having large asymmetries in how well distinct groups are
represented in the dataset compared to others (ITF 2019;
Yigitcanlar et al. 2020).

Both are connected to the underlying data used to gen-
erate predictive algorithms—but also to the blind spots of
those constructing a predictive system. The act of classifying or
counting something involves a preconceived notion of what is
worth counting or classifying (Crawford 2021). Whether special
attention is paid to how well vulnerable communities are
represented in both data and in technology communities will
influence who benefits from these technologies and who is left
behind (Hurtado et al 2021).

A core concern for bias in algorithmic decisions is that it can
enable institutional discrimination at massive scales (Mayson 2018).
Even slight bias aggregated across a software system or planning
tool could influence more decisions than any one individual. On
the other hand, cognitive bias and irrationality in human judge-
ment is held to a lower bar of accountability (Mayson 2018).

In theory, the operations and outputs of algorithms can
be inspected to measure their bias, a task difficult to achieve
for human decision-making in practice (Mayson 2018; OECD
2021a). Algorithmic risk assessments are clearly needed to
understand the potential impacts of algorithms’integration
into our civic institutions and planning systems (ITF 2019,
Mayson 2018).

When Past Should Not Be Prologue

Planning requires thinking about how policies and public
investments shape potential pathways for community futures
(Wright 2019). Statistics and machine learning will develop
predictive models for the future based on past data, and by so
doing the insights created from them use the past as prologue
(ITF 2019; Mayson 2018). There are two major concerns, howev-
er, regarding the application of these models:

* Cementing past mistakes. Basing decisions on predic-
tions from historical data is likely to repeat and reinforce
the outcomes of the past (Mayson 2018). This can often
follow the use of metrics or data that are convenient or at
hand, with outputs reinforcing historic values or creat-
ing unintended outcomes (Crawford 2021). Predictive
models can mirror how we have historically addressed
problems rather than reflecting the lens we bring to them
now (Mayson 2018). In other words, we risk automating
processes that were problematic to begin with because
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they will “inherit”the analytical frame of the system they
originate from.

* Managing change. Predictions based solely on historical
data will not adapt to changing conditions. For example, a
planning challenge likely to define the 21st century will be
planning for a changing climate. As of 2019, carbon dioxide
concentrations not seen for two million years are clear
examples of how pure machine-learning models may not
provide as much value in an environment where conditions
change (IPCC 2021).

For these reasons, care should be taken when these algo-
rithms are applied in situations with high degrees of uncertain-
ty or unprecedented circumstances, or where they are likely to
reinforce undesirable historical outcomes.

Error Minimization Is Not Zero Error

A key aspect to understand about applications leveraging ma-
chine learning is that as statistical engines, they work through
the minimization of measures of error in their predictions, often
called loss (Google 2020; Ding 2020).

The errors that can occur in machine-learning systems
have analogues to those from statistics, such as false positives
and negatives, but some are more complex (Ding 2020). For
example, technologists at Numina have documented many of
the errors that can occur for computer vision-based street-level
observation. These include detection errors, when an entity is
misidentified in the image or in the wrong location; classifica-
tion errors, when an identified entity is misclassified as another;
and tracking errors, when an entity is correctly detected or
classified, but a break in its path tracking occurs and inflates
resulting entity counts (Ding 2020).

When planners consider the potential integration of ma-
chine learning into infrastructure or processes, its application
should be judged from an understanding of consequences
to individuals or the public if it is wrong (ITF 2020; Mayson
2018). For example, planners working on an Al-derived asset
inventory project can set aside time for manual review if there
are some paths incorrectly classified as sidewalks or company
logos on vans misclassified as stop signs. However, integration
with sensitive or critical infrastructure deserves more scrutiny.
Real-world consequences can follow from prediction errors,
with a poignant example being the role of classification error in
an autonomous vehicle’s motion planning that led to the tragic
death of a pedestrian in Tempe, Arizona (NTSB 2018).

Data Protection and Privacy

Machine learning-based applications depend on data to
function. How this data is collected, managed, and secured can
have important policy implications about data protection and
privacy (Andrews 2019; LADOT 2020).

Much of the recent history of machine-learning benchmark-
ing datasets has been defined by a lack of consent of those
captured to train new algorithms. For example, the DukeMTMC
project for multitarget facial recognition was highly contro-
versial because it collected over two million frames of 2,000
students walking between classes without their consent and
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Figure 16. Numina’s sensor technology uses edge computing to provide multimodal traces of bicyclists and pedestrians using a greenway

in Brooklyn, New York (Numina)

was subsequently leveraged in surveillance software (Craw-
ford 2021). While this dataset was removed from the internet
because of the furor it caused, it is an important reminder
that for planning purposes, data should only be collected to
achieve specific purposes and privacy should be protected to
the greatest extent possible (LADOT 2020).

Certain data collection technologies, such as video capture
and GPS traces, can collect personally identifiable information (PIl)
about the subjects they observe, which has data security and pri-
vacy implications (NACTO and IMLA 2019). Any transmitted data
could theoretically be intercepted by an unauthorized third party
(ITF 2019; LADOT 2020; NACTO and IMLA 2019). Security concerns
can pose liability risks to planning departments and related pub-
lic-sector organizations leveraging these technologies.

One way to mitigate these risks is with a “privacy by design”
approach that protects the individuals observed from the onset
of the data collection process, typically by collecting and keep-
ing as little data as possible to get the job done (NACTO and

IMLA 2019; LADOT 2020; Tomer 2019). Related strategies include:

Figure 17. Anonymization techniques include the use of automat-
ed processes to blur faces detected in street view images (Meta
Platforms, Inc.)
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* Edge computing. Instead of transmitting live sensor
readings or images to a server to be processed, images
or other sensor data can be pre-processed on the device
and transmitted in an anonymized form (such as pedes-
trian or bicyclist traces or counts). This reduces the risk of
any interception of sensitive data and protects privacy
of those scrutinized by design. For example, traffic data
collection company Numina's sensor technology uses
edge computing to process the footage it collects so that
only Al-derived traces of user behavior are sent over the
internet (Figure 16). This means even if data is intercepted,
the privacy of those observed is respected by design.

* Anonymization techniques. Another approach that might
be less secure but still protects privacy is to anonymize im-
ages collected by blurring faces and similar data characteris-
tics (Figure 17). This approach may still be vulnerable to data
interception or similar risks, but it can ensure when data is
used that verified efforts are made to protect the identity
of those observed. All image data collection efforts should
employ at least this level of privacy protection.

Data Ownership and Licensing
In many cases, firms providing Al-derived data or services treat
their data and related products as a competitive advantage.
This view of their products can limit transparency into how the
data is derived and may limit how planners can use the data.
For example, data vendors and civic technology firms
commonly provide licenses that allow use of the data without
providing complete ownership, similar to software licenses.
Often these data licenses will restrict how the data is used to
prevent data sharing or even comparison to similar outputs
from other firms. This can have significant implications with
what role licensed data can play in open data ecosystems in
which this data is provided to the public to increase account-
ability, transparency, and integration (Bayat and Kawalek 2021).
The terms and conditions that apply to procurement data and
technology services can have important implications, such as
increasing the complexity of agencies' data management op-
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erations, reducing market competition for civic solutions, and
limiting the transparency of data informing public decisions.

Action Steps for Planners

Planners should consider the following recommendations to
leverage Al responsibly in a planning context. This list is by no
means comprehensive, but it should provide a starting point
for those wishing to support and integrate Al applications into
their processes.

Take a needs-first approach to solution selection. To
effectively apply Al, planning practitioners should start by
identifying community or organizational needs that advancing
Al capabilities can help meet.

There can often be a barrage of advertising to planners for
smart city or Al applications that can be classified as solutions
in search of problems. The most effective applications of
these technologies are often developed in response to extant
planning problems and needs. For example, many of the prac-
tice-focused applications discussed in this Memo center on how
advancements in Al can change how we collect data. Internal
discussions can be facilitated that center on questions such as:

*  What gaps currently exist in our community’s data systems?

*  Does our community already have a digitized sidewalk,
crosswalk, or tree inventory?

* Do our property appraisers have automated methods to
identify changes to properties based on aerial imagery?

*  How have we previously evaluated changes in perfor-
mance of changes in street design?

Develop a technology action plan. Organizations fall along
a wide spectrum of experience regarding data transparency
and management as well as deployment of advanced technolo-
gies. A technology action plan, such as the LADOT Technology
Action Plan referenced earlier in this article, can help identify
opportunities for municipal and regional governments to
identify data sharing and digital services that can advance better
cross-departmental collaboration and problem solving.

Key components of technology action plans include
guiding principles and values and a review of the skills and
infrastructure investments required to address identified needs.
An internal plan should explicitly state how issues related to
investments of IT infrastructure, upskilling staff, representation,
privacy, roles of different departments, and data ownership will
be managed; specify an outreach plan; and identify near-term
pilot projects to move planning into action.

Support and promote digital literacy. It is critical to
upskill staff to be digitally literate. Planners must understand
how the digital spheres of our lives impact the public interest
to base decisions on them (DeAngelis et al. 2022).

As organizations adopt civic technologies, there is an increas-
ing need for planners who can apply them to civic problems.
Organizations can foster digital literacy in a number of ways:

*  Support continuing education of staff regarding becom-
ing familiar with emerging technologies.
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e Listen to, promote, and recognize action-oriented plan-
ners willing to work between the digital, physical, and
governance spheres of planning.

* Review emerging legal, policy, and regulatory resources,
such as those provided by the OECD Al Policy Observato-
ry or Oregon State University’s Nexus.

*  Conduct digital needs assessments and become familiar
with important digital services best practices from resourc-
es such as OECD’s Digital Government Toolkit, E-Leaders
Handbook on Digital Government, and Digital.gov.

*  Familiarize staff with key civic technology aggregators
such as the civic technology field guide or the APA Tech-
nology Division's urban and regional planning resource
page. These pages link to rich collections of different tech-
nology service providers, tools, data, and vendors.

Support experimentation. Innovation requires nurturing
systems that encourage it. Planners should help their organiza-
tions identify and eliminate barriers to entry for procurement
contracts.

Conventional procurement processes can demand exten-
sive experience requirements or a high degree of specification
regarding how tasks are done that bias procurement toward
incumbents who provide tried-and-tested solutions (Ortmans
2015). Constructing scopes of work and vendor requirements
for projects and programs that don't exclude start-ups and
Creative approaches is an important step towards supporting
more public-sector innovation. Consider pilot projects, internal
team trainings, technology exchanges, university partnerships,
coordinating with programs supporting young companies, and
“entrepreneur-in-residence” programs.

Plan for real-time expectations. The transportation sector
is already seeing a revolution in expectations regarding how
systems are expected to adapt to changing needs almost
instantaneously. The pace of processing and the expectation
of quickly informed decision-making is taking place across
the economy, and its influence on the expectations of civic
processes including planning, zoning, and permitting will likely
be hard to ignore. These expectations are quite acute when we
consider how planning systems need to respond to post-disas-
ter crises in a world undergoing climatic shifts (IPCC 2021).

Planners need to balance the careful long-term thinking
required for comprehensive planning activities with the chang-
ing expectations of developers and the public for accessible
and agile “front end” planning processes.

Consider the reversibility principle. The reversibility
principle holds that when we consider deploying a new tech-
nology, we prioritize the application of products and processes
whose negative impacts will cease when withdrawn.

As with other new technologies, to maintain urban resil-
ience, initial applications of Al should be made in investments
whose impacts are reversible. Initial deployments of Al tech-
nology for civic purposes thus should be guided by the ability
to back out of agreements, manage risks, and ultimately cease
the application of these technologies if negative impacts are
outsized relative to benefits. This might mean working with
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subscriptions through vendors that are easier to cancel and
avoiding deep integrations into mission-critical systems, such
as emergency services.

Develop and support machine-readable regulations
and codes. Planners should actively work to develop open and
machine-readable regulations and codes to prevent misalign-
ment between third-party interpreters and the actual law. This
means finding ways to digitally distribute the rules behind
policies—ideally, using accessible text formats such as HTML,
XML, and Markdown alongside or instead of PDFs.

The ability of the planning profession to maximize the
benefits of civic Al will depend on our ability to develop con-
sensus-based standards defining the digital representation of
zoning codes, curbside regulations, street layouts, bike facilities,
easements, and other legal constructs. Planners should actively
seek to increase their awareness of relevant data standards and
support their adoption if those standards can support planning
in their communities.

Adopt data standards and consider interoperability and
system integration. One of the benefits of Al-derived data
is that it provides a repeatable, scalable, and standardizable
approach to collecting data of a potentially arbitrary definition.
However, much of this benefit will be lost if planners do not
proactively define what is needed to solve planning problems
and standardize it.

If every region reinvents the wheel when developing solu-
tions, the shared value created by emerging Al algorithms will
be slow to realize. Sharing standards and templates for quality
assurance approaches could go a long way towards ensuring
that planners have baseline methods to assess Al-derived data.

Similarly, for communities and planning processes to
see tangible benefits from most advances in software and
technology, solutions need to provide integrated workflows
across multiple stages of the planning process and encourage
collaboration across departments. This challenge is particularly
salient when considering the need for solutions to address
problems across different spatial and temporal resolutions and
between disciplines.

Prioritize ethics, equity, and privacy protection in im-
plementing Al. Special attention should be given to applica-
tions related to understanding how Al systems will influence
outcomes for vulnerability community members as part of
planning processes. This consideration extends to how Al
systems are developed and deployed within public and private
systems within our communities.

For civic applications of Al to be politically acceptable, planners
should directly address the public about privacy. All stored data
derived from Al systems should actively have Pl stripped from it.

Consider bias and representation. Planners have a role in
working to establish fair civic processes and apply Al responsi-
bly, if at all. This will mean paying careful attention to whether
open-source solutions provide documentation on the steps
they followed to have well-represented training datasets. When
working with technology providers, planners can ask whether
their models were trained on datasets that were developed
with inclusive representation in mind.
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Understanding who an algorithm leaves behind means
identifying methods to audit algorithms and asking questions
about the curation process and composition of training data.
Planners should support calls for greater transparency in the
development processes of machine-learning datasets through
the creation of datasheets that identify important questions
that help inform planner’s assessments of the potential for
algorithmic bias (Gebru et al. 2021).

Actively develop training data. Data comes in many
forms and contexts, including audio and imagery sources—not
just conventional tabular or GIS data. Planners can help define
what should be digitized, what should be made public, and
what should be protected. They should prioritize the use of
data collection processes that protect privacy, are resource
efficient, and avoid exploitative crowdsourcing systems. Re-
member that machine-learning algorithms require much larger
training set sizes than conventional statistical techniques, and
so either automated data acquisition or partnerships with
neighboring or similar communities may be required to get to
useful sample sizes.

A promising area for exploration is the development of
planning-specific synthetic datasets comprised of data from
renders of virtual worlds or generative algorithms (Andrews
2021). For example, a 3D model of street-oriented buildings
and buildings set back from their frontage could have renders
taken from multiple angles to train a computer vision algo-
rithm to identify the differences between them, irrespective
of perspective. Datasets such as Cityscapes and Synthia are
examples of rendered datasets that suggest how data for cities
can be designed to support planning-specific problems (An-
drews 2021; Nikolenko 2019).

Conclusion

A world governed by algorithms has immense promise and
peril. Machine learning has the potential to create insights and
inform decisions in a world awash with data, changing plan-
ning practice across multiple specializations.

As Al-infused technologies interweave into practice,
planners will need to retain their focus on how to facilitate
desirable long-term community outcomes and their willing-
ness to tackle the complexity so entangled with the wicked
problems that planning endeavors every day to confront. The
key breakthroughs in Al can help communities digitize their
infrastructure or land use, reinvent urban observation, forecast
alternative community futures, inform decision-making, accel-
erate design processes, and help read the room during public
engagement and public deliberations.

On one side, we can envision digital twins that help with
projecting the intended or unintended consequences of in-
terventions or policies so we can chart informed pathways for
better community outcomes. On the other, naive application
of these technologies can pose risks to community resilience,
reinforce existing inequities, yield poor returns, and erode
community trust.

These divergent views of Al's role in future decision-making
are a reminder that the act of prediction is a mirror. Its reflec-
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tion is more than a single inductive inference—it is an image
of our collective past and values. If we do not like what we see,
it can be interpreted as a judgment of ourselves as well as the
technology’s application. Planners’ roles in civic decision-mak-
ing give them some influence and agency of what this collec-
tive image looks like, and it starts by bringing a critical lens to
questions about the data, values, and motivations enveloping
what we collectively understand as Al.
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